Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Grouping stars by chemical similarity has the potential to reveal the Milky Way’s evolutionary history. The APOGEE stellar spectroscopic survey has the resolution and sensitivity for this task. However, APOGEE lacks access to strong lines of neutron-capture elements (Z> 28), which have nucleosynthetic origins that are distinct from those of the lighter elements. We assess whether APOGEE abundances are sufficient for selecting chemically similar disk stars by identifying 25 pairs of chemical “doppelgängers” in APOGEE DR17 and following them up with the Tull spectrograph, an optical,R∼ 60,000 echelle on the McDonald Observatory 2.7 m telescope. Line-by-line differential analyses of pairs’ optical spectra reveal neutron-capture (Y, Zr, Ba, La, Ce, Nd, and Eu) elemental abundance differences of Δ[X/Fe] ∼ 0.020 ± 0.015 to 0.380 ± 0.15 dex (4%–140%), and up to 0.05 dex (12%) on average, a factor of 1–2 times higher than intracluster pairs. This is despite the pairs sharing nearly identical APOGEE-reported abundances and [C/N] ratios, a tracer of giant-star age. This work illustrates that even when APOGEE abundances derived from spectra with a signal-to-noise ratio > 300 are available, optically measured neutron-capture element abundances contain critical information about composition similarity. These results hold implications for the chemical dimensionality of the disk, mixing within the interstellar medium, and chemical tagging with the neutron-capture elements.more » « lessFree, publicly-accessible full text available October 23, 2026
-
Anisotropic pair breaking close to surfaces favors the chiral phase of the superfluid over the time-reversal invariant phase. Confining the superfluid into a cavity of height of the order of the Cooper pair size characterized by the coherence length —ranging between 16 nm (34 bar) and 77 nm (0 bar)—extends the surface effects over the whole sample volume, thus allowing stabilization of the phase at pressures and temperatures where otherwise the phase would be stable. In this Letter, the surfaces of such a confined sample are covered with a superfluid film to create specular quasiparticle scattering boundary conditions, preventing the suppression of the superfluid order parameter. We show that the chiral phase is the stable superfluid phase under strong confinement over the full phase diagram down to a quasi-two-dimensional limit , where . The planar phase, which is degenerate with the chiral phase in the weak-coupling limit, is not observed. The gap inferred from measurements over the wide pressure range from 0.2 to 21.0 bar leads to an empirical ansatz for temperature-dependent strong-coupling effects. We discuss how these results pave the way for the realization of the fully gapped two-dimensional superfluid under more extreme confinement. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 31, 2026
-
Abstract The goal of this paper is to describe the science verification of Milky Way Mapper (MWM) APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) data products published in Data Release 19 (DR19) of the fifth phase of the Sloan Digital Sky Survey (SDSS-V). We compare MWM ASPCAP atmospheric parametersTeff, logg, 24 abundances of 21 elements (carbon, nitrogen, and oxygen have multiple sources for deriving their abundance values) and their uncertainties determined from Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph spectra with those of the literature and evaluate their accuracy and precision. We also test the zero-point calibration of thevradderived by the APOGEE Data Reduction Pipeline. This data release contains ASPCAP parameters for 964,989 stars, including all APOGEE-2 targets expanded with new observations of 336,511 stars from the Apache Point Observatory observed until 2023 July 4. Overall, the newTeffvalues show excellent agreement with the IRFM scale, while the surface gravities exhibit slight systematic offsets compared to asteroseisimic gravities. The estimated precision ofTeffis between 50 and 70 K for giants and 70–100 K for dwarfs, while surface gravities are measured with a precision of 0.07–0.09 dex for giants. We achieve an estimated precision of 0.02–0.04 dex for multiple elements, including metallicity,α, Mg, and Si, while the precision of at least 10 elements is better than 0.1 dex.more » « lessFree, publicly-accessible full text available July 17, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract The symmetry-breaking first-order phase transition between superfluid phases$$^3$$ He-A and$$^3$$ He-B can be triggered extrinsically by ionising radiation or heterogeneous nucleation arising from the details of the sample cell construction. However, the role of potential homogeneous intrinsic nucleation mechanisms remains elusive. Discovering and resolving the intrinsic processes may have cosmological consequences, since an analogous first-order phase transition, and the production of gravitational waves, has been predicted for the very early stages of the expanding Universe in many extensions of the Standard Model of particle physics. Here we introduce a new approach for probing the phase transition in superfluid$$^3$$ He. The setup consists of a novel stepped-height nanofluidic sample container with close to atomically smooth walls. The$$^3$$ He is confined in five tiny nanofabricated volumes and assayed non-invasively by NMR. Tuning of the state of$$^3$$ He by confinement is used to isolate each of these five volumes so that the phase transitions in them can occur independently and free from any obvious sources of heterogeneous nucleation. The small volumes also ensure that the transitions triggered by ionising radiation are strongly suppressed. Here we present the preliminary measurements using this setup, showing both strong supercooling of$$^3$$ He-A and superheating of$$^3$$ He-B, with stochastic processes dominating the phase transitions between the two. The objective is to study the nucleation as a function of temperature and pressure over the full phase diagram, to both better test the proposed extrinsic mechanisms and seek potential parallel intrinsic mechanisms.more » « less
-
Abstract Stars that formed with an initial mass of over 50M⊙are very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50M⊙, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys.more » « less
An official website of the United States government
